High-order compact LOD methods for solving high-dimensional advection equations
نویسندگان
چکیده
Abstract In this paper, by using the local one-dimensional (LOD) method, Taylor series expansion and correction for third derivatives in truncation error remainder, two high-order compact LOD schemes are established solving two- three- dimensional advection equations, respectively. They have fourth-order accuracy both time space. By von Neumann analysis it shows that unconditionally stable. Besides, consistency convergence of them also proved. Finally, numerical experiments given to confirm efficiency present schemes.
منابع مشابه
High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations
In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...
متن کاملOn High-Order Upwind Methods for Advection
In the fourth installment of the celebrated series of five papers entitled “Towards the ultimate conservative difference scheme”, Van Leer (1977) introduced five schemes for advection, the first three are piecewise linear, and the last two, piecewise parabolic. Among the five, scheme I, which is the least accurate, extends with relative ease to systems of equations in multiple dimensions. As a ...
متن کاملCompact finite difference methods for high order integro-differential equations
High order integro-differential equations (IDE), especially nonlinear, are usually difficult to solve even for approximate solutions. In this paper, we give a high accurate compact finite difference method to efficiently solve integro-differential equations, including high order and nonlinear problems. By numerical experiments, we show that compact finite difference method of integro-differenti...
متن کاملAn explicit high order method for fractional advection diffusion equations
We propose a high order explicit finite difference method for fractional advection diffusion equations. These equations can be obtained from the standard advection diffusion equations by replacing the second order spatial derivative by a fractional operator of order α with 1 < α ≤ 2. This operator is defined by a combination of the left and right Riemann–Liouville fractional derivatives. We stu...
متن کاملNumerical approximation based on the Bernouli polynomials for solving Volterra integro-differential equations of high order
In this article, an applied matrix method, which is based on Bernouli Polynomials, has been presented to find approximate solutions of high order Volterra integro-differential equations. Through utilizing this approach, the proposed equations reduce to a system of algebric equations with unknown Bernouli coefficients. A number of numerical illustrations have been solved to assert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational & Applied Mathematics
سال: 2021
ISSN: ['1807-0302', '2238-3603']
DOI: https://doi.org/10.1007/s40314-021-01483-w